
Multi-component spin model on a Cayley tree

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 593

(http://iopscience.iop.org/0305-4470/9/4/016)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
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Mdti-component spin model on a Cayley tree 
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Received 10 June 1975, in final form 8 September 1975 

AMract. A general spin model on the Cayley tree lattice, which includes both the q 
component Potts and the Ashkin-Teller models, is considered. The free energy in zero field 
is evaluated in a closed form and found to be analytic in temperature. The model exhibits no 
long-range order in the sense that the probability of finding two sites far away to be in spin 
states a and @ is a constant, independent of CY and 8. 

We also evaluate the susceptibility per site, xR, for a region R in the centre of the 
lattice, defined to be the summation of the site-site correlations between R and the whole 
lattice L. For the linear size of R to be any finite fraction of that of L, xR diverges at the 
Bethe-Peierls temperature@ TBP, while for R = L, xR diverges at temperature(s) different 
from TBp. 

1. Introduction 

The spin-f Ising model on a Bethe lattice has been of renewed recent interest. The 
model was first introduced some twenty years ago by Kurata er a1 (1953) who obtained a 
dosed-form expression for its free energy. It was recognized only recently (Eggarter 
1974, von Heimburg and Thomas 1974, Matsuda 1974) that, while its free energy is 
analytic in temperature, the model actually possesses a phase transition characterized 
by a divergent susceptibility (and a zero long-range order). As this kind of Critical 
behaviour is not without physical interest (see e.g. Stanley and Kaplan 1966), it is useful 
to extend the consideration to other models. The lattice gas of hard molecules on a 
Bethe lattice has been considered by Runnels (1967). We study in this paper a general 
spinmodel which includes both the Potts (1952) and the Ashkin-Teller (AT) (1943) 

Our discussion uses the Perron-Frobenius theorem and is more direct and 
app]l@ble to the general Cayley tree lattice. Critical behaviour similar to that of the 
Vin+Ising model on the Bethe lattice is obtained. 
ne outline of our paper is as follows. In 0 2, the general spin model is defined and 

thepartition function evaluated in a closed form. In 0 3, we establish the absence of a 
order by evaluating the appropriate correlation function. Both of these 

wbarevalid for Cayley tree lattices, The susceptibility is evaluated in 0 4 for a Bethe 
lanice, and is found to diverge in certain temperature ranges. By defining the 
@PtibiliQ’ slightly differently which neglects the surface effect, the temperature 
mg‘ In which the susceptibility diverges are found to be different. These latter 

are shown in 0 5 to be related to the Bethe-Peierls temperatures of the 
%model. 

‘*win Pan by the National Science Foundation Grant NO. DMR72-03213-AO1. 
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2. me partition function 

Following Essam and Fisher (1970), we use the term Cayley tree to denote a 
graph which contains no cycles. A Bethe lattice is then a Cayley tree haviq the same 
valence at all vertices. Generally, there are N- 1 edges in a Cayley tree of N vertices 
m e  vertices of valence 1 are said to be on the 'surface'. An example of a CayIey 
which has 12 surface vertices is shown in figure 1. Note that there exists a u"iquepa& 
between any two vertices of a Cayley tree. 

Figure 1. A Cayley tree with 12 surface vertices. 

Consider wa q component spin system on a Cayley tree with spin variables 

(1) 

where (ij) stands for all nearest-neighbouring pairs, and -J(& ( j )  = -J(br ti) is the 
interaction energy between two sites in states (, and 6,. The partition function IS then 

5;: = 1,2, . . . , q;  i = 1,2,  . . . , N. The Hamiltonian can be quite generally written as 

R= - C J(& tj) 
(ti) 

The free energy per site is 

f =  - kT lim N-' In 2. 
N-m 

We shall restrict our considerations to the spin model satisfying the relation 

(4) 

independent of 5. Two examples are the q component (standard) W+fS and the AT 
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here = exp(&). For E > 0, the Potts model is a generalization of the ferromagnetic 
hgmdel (q = 2) which has a 4 fold degenerate ground state. The E < 0 Potts model, 
on the other hand, has a highly degenerate ground state and has been termed the 
*&ogonal‘ model by Alexander and Yuval (1974). Another example is the planar 
(vector) Potts model with 

.@,If) = E C O 4 2 4 5  - t’>/Sl (8) 

which reduces to the classical Heisenberg model in the limit of q + 00. 

In the Ising case, the partition sum (2) has been evaluated by means of high 
temperature expansion (Kurata er al 1953) and spin variable transformation (Eggarter 
1974). The summation can actually be carried out simply and more generally for the 
general spin model ( 5 )  as follows. We start from a spin 5, on the surface of the Cayley 
Wandobserve that its summation yields a factor w and reduces Zinto Z = wZ’. Here 

the partition function of the Cayley tree with the spin 4, and its associated edge 
dekted. The process can obviously be continued. After eliminating all but one spins 
ad all the edges, we arrive at 

9 z= wN-l c 1 =qwN-‘. 
(=1 

fie free energy per site in the thermodynamic limit is then 

f =  - kTIn  w 

(9) 

which is analytic in the temperature T. 
. To reveal the non-andyticity in the free energy, we shall in later discussions 
@‘@he a field - h to one of the spin components and consider more generally the free 
eoer8’f=f(T, h )  in both variables T and h. While. (10) shows f (T ,  0) analpic in it 

Seen that f( T, h )  can be non-analytic in h. 

3* %e “elation fundon and the absence of long-range order 

‘bemethod Of Summation described above can also be used to evaluate the correlation 
fenehon for the spin (5). For an  appropriate definition of the correlation 
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function, consider fist  the probability Pl(a, P )  of finding two vertices 1 steps apartinthe 
respective spin states CY and P. Let the two spin sites be A and B. We have 

(11) Pf(CY, P )  = ( ~ K r ( t A 7  a ) M t B ,  P))=Z-' C'T1  ti, t j )  
{5 )  (if) 

where ( ) denotes the thermal average and the prime in the summation denotes that fie 
spin states at A and B are fixed at 5 ~ = a ,  &=P.  Note that the usual spinspin 
conelation for the spin-4 Ising model (& = ai) is given in terms of the probabilities as 

(aOaf)= c aAuBPf(aA, 
mA OB 

Since we expect liml-,m Pl(ar, P )  to be independent of 
correlation between the spins, the site-site correlation function can be taken to 

and P when there eltisb no 

(12) rib, P )  = P ~ C Y ,  P )  -c2. 
There is no long-range order if limf+a rf(a,  p)  = 0, which says that the probabilityof 
finding two sites far away to be in states CY and p is a constant. 

To evaluate the correlation function Tl(cu, P) ,  we proceed as in P 2. Startingfromthe 
surface vertices of a Cayley tree, we can carry out the spin sums one by one and 
eliminate all vertices and edges except those lying on the unique path between A and B 
(the full lines in figure 2). Number these vertices 1,2, . . . 1 - 1 running from A to B. 

Figure 2. The full lines denote the unique path between two vertices A and B of a aYb 
tree. 

We then obtain 

c 4% tl>U(51,52> . . . u(tf-11 P )  Pl((Y, p)  = z-lwN--(f+l) 
51 ... 51-1 

(13) 
= 4-1rvfla, 

V,p =[VIaD = w-lu(a, p>. 
where we have used (9) and V is a q x q matrix whose elements are 

Let the eigenvalues of V be hi and the a th  component of the (normalized) 
associated with Ai be 4 j ( ~ ) .  Then we may write 

(14) 
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It is easy to see that, as a consequence of (5) ,  A l  1 is an eigenvalue of V with 
= 1/44 for all a. It follows then 

NOW the matrix v has strictly positive elements and #q(a) is positive. Then by fie 
pmo&obeiuS theorem, we know that A I  = 1 is in fact the largest eigenvalue and is 
,,ondegenerate. Hence we find 

lim T,(a, p)  = 0 
I-m 

which establishes the absence of a long-range order. 

hd for the Potts models: 
For the Potts and AT models, where V is a cyclic or doubly cyclic matrix, we then 

4j(a) = q-l” exp[2.rri(j- I)(& - 1) /q ]  (18) 

A 2 = A 3 = .  ..=A,=l-q/w (standard Potts) (194 

A l = l  

1 4  
Aj = - 1 exp[& cos(2?rk/q) + 2 ~ i k ( j  - l)/q] 

w k = l  

4‘ h P t i b W y  and fluctuation 

Toilves~gate the non-analytic behaviour of the free energy f(T, h) ,  where - h is the 
Geldlnkodwed to the spin component a, we consider the zero-field susceptibility 

x= Iim ~ - ~ ( ( n 3 - - ( n ~ ’ ) ,  (23) 
N-CO 



598 Y K Wang and F Y Wu 

(24) 

In view of the absence of a long-range order, we shall take 

(25) (na> =N/q-  
It follows then from (1 1) and (12) 

Here, I(r, s) is the number of steps between sites r and s. One mayrecognhthat(26)k 
the usual fluctuation relation. 

To wry out the summations in (26), we now consider a regular Bethe lattice. & 
lattice, shown in figure 3, is composed of g + 1 generations of lattice points and ha a 

Fwe 3. A four-generation (g = 3) Bethe lattice with coordination number y = 3  (B  =2). 

coordination number y = B t- 1. Number the generations by n( = 0,1, . . . , g) so that 
there are B" vertices in the nth generation. We may rewrite (26) for the g + l  
generation lattice as 

where 

Ng = ( W + I  - l)/(B - 1) (28) 

and 

is the correlation between the generations IZ and a'. Finally, after taking the ther- 
modynamic limit g + m? we obtain 
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~ ( 1 )  is the number of 1 step paths between vertices in n and n'. 
without loss of generality, we need only to consider n 3 n'. It is clear that, starting 

"Bgiven vertex A in n, there is precisely one vertex in n' which is n - n' steps away. 
aehere  are B" vertices in n, we find 

(33) G(n - n') = B". 

@g[y, there are B - 1 vertices in n' which are n - n'+ 2 steps away from A, and 
ke~dly (B  - 1)B k-l  vertices in n' which are n - n'+ 2k steps away from A. Thus, for 
Il3" 

t (q-1)-  xnn, 
1 (Pote)=Bn(An-". + $ ( B  - 1 ) ~ k - l ~ n - n ' C Z ' )  

k = l  

= B"'!BA)"-"'(I - A ~ [ I + ( B -  i ) ( ~ ~ ~ ) " f ) ( i  -BA~)- ' .  (34) 

For n%n, we simply interchange n and n' in (34). 

thermodynamic limit, we find 
Substituting (34) and (28) into (27) and (30), and dropping terms that vanish in the 

q2(4-l)-'x=(1+A)/(l-BA)- lim H(g, A )  
g+m 

where 

(35) 

Be Susceptibility therefore diverges for BA's 1. Using (32), the condition BA23 1 
implies 

T s  T,(JB) 
where 

A s~b3 result is that x diverges in the orthogonal model ( E  C 0) provided that 
JBtl'q. This appears to be a unique property of the Bethe lattice, for it is known 
'! for an king antiferromagnet, the q = 2 orthogonal model, on a square or cubic 
lare (B = 3  or 51, the free energy f( T, h )  is analytic in h at sufficiently low tempera- 
&(Brascamp and Kunz 1973). 

Theresult (37) for x can be readily generalized to the general spin model (5). Using 
(I6) and (271, we find 
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where 

The above result serves to establish that the free energy f( T, h) fails to be analyticin 
h, in at least the temperature ranges (44). For an king ferromagnet, it has been known 
(Muller-Martmann and Zittartz 1974) more generally that the higher field derivativaof 
the free energy diverge in wider temperature ranges. The result is that f(T, h) is 
nonanalytic in h for TG TBp, where TBp is the Bethe-Peierls temperature of the i s i g  
model. A similar analysis can presumably be carried out for the present problem. We 
shall, however, proceed in another direction. 

The effect on the critical behaviour due to the large number of surface verticesof the 
Bethe lattice appears to have been first observed by Runnels (1967). In the present 
problem the non-analyticity off( T, h) at TBp manifests itself if one focuses attention to 
a central region of the lattice (Eggarter 1974). Proceeding along this line, we define the 
susceptibility for a central region R of a Bethe lattice L as the following generakation 
of (26): 

XR = NR' C C r l ( r , $ ) ( t r  = a, t s  = a) (45) 
r e R  SSL 

where NR is the number of sites in R. As we shall see, xR diverges at TB,for any R f 
Specify the region R by the index O< v < 1 such that 

R = (a10 s n s vg} (46) 

(47) 
and 

N R -  - (B"'+' - l) /(B - 1). 

Equation (27) now reads 

The last expression can again be evaluated using (29) and (16). For the Potts mode'' 
for example, we obtain the following in place of (35),  

(49) q2(4- l)- 'x(v)=(l  +A)/(l-BA)- lim(BA)"-"'gH(g, A). 
g-* 

<1 ' 
q-2(q - 1)(1+ A ) / ( l  -BA) IBA1 < 1 (50) 

Equation (49) is the same as (35) for Y = 1. It is clear, however, that we have for 

= divergent IBA1 3 1. 
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’Ibus,be susceptibility x ( v )  diverges for IBA[ 3 1 or 

&re T,(B) lies above T,(.\IB). Similarly, the susceptibility X(v)  for the general spin 
d e i  (5 )  diverges whenever any I&( 3 1/B. We shall show in 0 5 that, indeed, these 

of divergences are related to the Bethe-Peierls temperature(s) of the spin 
etem. 

T S  T,(B), (51) 

5, % Bethe-Peierls temperature 

bthis section, we determine the Bethe-Peierls critical temperature for the spin model 
(9. 

Consider a lattice of coordination number y and focus our attention to a particular 
&e, A. Let Pc}(i) ,  where 

{n} = (nl, n2, . . . , nq) 

nl+nz+. . .+n4=y, (52) 
bethe probability of finding A in the ith ( = 1, . . . , q)  state and ni of its y neighbouring 
siiesin the jth state. The probability that A is in the ith spin state is then 

pA(i) = C p{,,$(i). 

Siarly, the probability that one of the y neighbours of A is in the ith state is 

(53) 

i 

Forthe system in a translationally invariant state, we then expect 

pA(I’) = PB(i )  i = l , 2 , .  . . ,q. (55)  
MY q-1 of the q equations in (55) are independent, since the summations over i on 
both sides of (55) are identically equal to 1. 

The Bethe-Peierls approximation is to write (see, e.g., Huang 1963) 

where 

C1...nq= y!/nl! . . . nq! (57) 
“tmubomial coefficient, uii = u(i, j )  is the Boltzmann factor (3), and zi a quasi- 
fuga%‘hxiuced to represent the effect of the rest of the lattice. Equations (55) are 
then used to determine zl,. . . ~ z4. The constant F in (56) is determined by the 
maIization 
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with 

fi =E Uiizj. 
i 

Using (56) and (59), we find 

P*G)=f: 

Equations (55) now lead to 

(62) 

Gi(z1,. . . , z,)=f:-~~ uiIfiy-'. (63) 

Equations (62) are homogeneous in z:, . . . , z i .  The existence of a non-trivial S O I U ~ ~ ~  

is guaranteed because only q - 1 of the 4 equations are independent. 
Without loss of generality, we may take z1 = 1 and consider q - 1 of the q equatiom 

in (62), say, i = 2, . . . , q. Using (5),  it is immediately seen that one solution to (62) is 

Gi(zl, . . . , zq) = 0 i =  1,. . . , q  

where 

I 

z,=z,= ...= z q = l  (64) 
which is valid at all temperatures. The other solutions, if any, are temperature 
dependent. 

If another solution to (62) exists, we say that a transition occurs (under the 
Bethe-Peierls approximation) at the temperature the solution first appears. This is the 
Bethe-Peierls temperature TBp. 

Todetermine T,,in the present problem, we expand Gz(l, z2,. . . , z,)near(@)md 
rewrite the 4 - 1 equations as 

(65) 

where 

The condition that (65) has a nontrivial solution is 

detlGiil = 0. 

This is now the equation which determines TBp. Note that detlG,,I is a (q-l)'(q-') 
determinant. 

TJsing (63) and (15), it is easily found that 

Glj = rvj - 6, - (7 - I)[V2Ilj 
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a& whose elements are (l-Ak)C(y- 1)Ak - 11, i, k = 2, . . . ,4. Equation (68) then 
Md!4 to 

(69) detlGijl = det(+A+*) = det(+’+) det A 

&ere +* is the adjoint of 4. The first factor in (69) can be evaluated using the 
donomaI relation 

h& leads to the value 4-l. TBp is now determined by 

NOW < 1 for k # 1. Hence the solutions are 

BA,, = (7-  1)Ak = 1 k = 2 , .  . . , 4. (72) 

We have obtained in 0 4 the result that the susceptibility ,y( v) diverges for lBhk I 2 1. 
me for positive hk the temperature IBAk[ = 1 is indeed the TBp given by (72), for 
A,<Othis is not the case. Now, as hk < 0 only for some special energy parameters, such 
as the orthogonal ( E  < 0) Potts model, it seems that by rewriting the condition (55 )  
appropriately, one should be able to derive other TBp which may lead to BAk = - 1. An 
example is the q = 2 orthogonal Potts model. In this model the ordered state is 
‘antiferromagnetic’; in place of ( 5 9 ,  one writes 

which indeed leads to the TBp given by 

BA = -1. (74) 

b TBP (for q = 2) happens to be the same as that of E > 0.) We have been unable, 
h e w ,  to extend the considerations in the most general case. 

6 hnunary 

wehave considered a general spin model on a Cayley tree. The free energy in zero field 
Sanabtkin temperature and there is no long-range order. Considered as a function of 
an external field h, the free energy is non-analytic at h = 0 in certain temperature 

It is shown that when the surface effects are appropriately excluded, these 
fempratureS coincide with the Sethe-Peierls temperatures of the spin model. Our 
?‘“PlY, in particular, that the free energy of an Ising antiferromagnet is nonanaly- 

h = O  at low temperatures. This behaviour is different from that of the Ising 
‘‘enOmagnet on a square or cubic lattice. 

~ w 4 g l l e n t s  

iVeWkh thank J F Nagle for calling our attention to the paper of Runnels (1967). 
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Note added in proof. Properties of the spin correlation functions of the i s h g  Syskmona 
Cayley tree have been given recently by Falk. 
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