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Received 10 June 1975, in final form 8 September 1975

Abstract. A general spin model on the Cayley tree lattice, which includes both the ¢
component Potts and the Ashkin~Teller models, is considered. The free energy in zero field
is evaluated in a closed form and found to be analytic in temperature. The model exhibits no
long-range order in the sense that the probability of finding two sites far away to be in spin
states « and B is a constant, independent of & and B.

We also evaluate the susceptibility per site, xg, for a region R in the centre of the
lattice, defined to be the summation of the site-site correlations between R and the whole
lattice L. For the linear size of R to be any finite fraction of that of L, xr diverges at the
Bethe-Peierls temperature(s) Tgp, while for R =L, x5 diverges at temperature(s) different
from Tgp.

1. Introduction

The spin-3 Ising model on a Bethe lattice has been of renewed recent interest. The
model was first introduced some twenty years ago by Kurata e al (1953) who obtained a
dosed-form expression for its free energy. It was recognized only recently (Eggarter
1974, von Heimburg and Thomas 1974, Matsuda 1974) that, while its free energy is
analytic in temperature, the model actually possesses a phase transition characterized
by a divergent susceptibility (and a zero long-range order). As this kind of critical .
bebaviour is not without physical interest (see e.g. Stanley and Kaplan 1966), it is useful
Wextend the consideration to other models. The lattice gas of hard miclecules on a
Bgthe lattice has been considered by Runnels (1967). We study in this paper a general
i model which includes both the Potts (1952) and the Ashkin-Teller (AT) (1943)
‘md?ls. Our discussion ‘uses the Perron-Frobenius theorem and is more direct and
3P?htl:able to the general Cayley tree lattice. Critical behaviour similar to that of the
Y1t Ising model on the Bethe lattice is obtained.
The putline of our paper is as follows. In § 2, the general spin model is defined and
Partition function evaluated in a closed form. In § 3, we establish the absence of a
"ETange order by evaluating the appropriate correlation function. Both of these
'“‘_11(5 are valid for Cayley tree lattices. The susceptibility is evaluated in § 4fora Bethe
ke, aﬂd is found to diverge in certain temperature ranges. By defining the
::‘-epn‘bmty slightly differently which neglects the surface effect, the temperature
%5 m which the susceptibility diverges are found to be different. These latter
~Petatures are shown in § 5 to be related to the Bethe-Peierls temperatures of the

i mode],
i .
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594 YK Wangand F Y Wu
2. The partition function

Following Essam and Fisher (1970), we use the term Cayley tree to denote a connecteq
graph which contains no cycles. A Bethe lattice is then a Cayley tree having the sy
valence at all vertices. Generally, there are N—1 edges in a Cayley tree of N vertice
The vertices of valence 1 are said to be on the ‘surface’. An example of a Cayley&eé
which has 12 surface vertices is shown in figure 1. Note that there exists a unique path
between any two vertices of a Cayley tree.

Figure 1. A Cayley tree with 12 surface vertices.

Consider 2 g component spin system on a Cayley tree with spin variables
&£=1,2,...,4;i=1,2,...,N. The Hamiltonian can be quite generally written as

#=—3 J& &) i
K |
where (ij) stands for all nearest-neighbouring pairs, and —J(£, &)= —J(§, &) is the
interaction energy between two sitesin states £ and . The partition function is then

Z=3 [T ulé &) @
& G ;
where

u &) =explBIg )] B=(KT)™.
The free energy per site is .

f=—kT lim N'In Z
N->oo
We shall restrict our considerations to the spin model satisfying the relation
q (5)
2 uEE)=w (

&=

AT
independent of £ Two examples are the q component (standard) Potts and ¢
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models for which
J(¢ &) =€bg.l§ &) (Potts)
€ € € €&
Jge)=| % ° S e (AT) (6)
€ € € €
€3 €; € €o
and
w=ef+q-1 (Potts)
W= U+ U+ Uyt Us (AT) ' )]

where u; =exp(Be;). For e >0, the Potts model is a generalization of the ferromagnetic
lsngmodel (¢ = 2) which has a q fold degenerate ground state. The e <0 Potts model,
on the other hand, has a highly degenerate ground state and has been termed the
othogonal’ model by Alexander and Yuval (1974). Another example is the planar
{vector) Potts mode} with

J(§ &) =€ cos[2m(£—¢£")/q] ]

which reduces to the classical Heisenberg model in the limit of g - 0.

In the Ising case, the partition sum (2) has been evaluated by means of high
temperature expansion (Kurata et al 1953) and spin variable transformation (Eggarter
1974). The summation can actually be carried out simply and more generally for the
general spin model (5) as follows. We start from a spin £ on the surface of the Cayley
teeand observe that its summation yields a factor w and reduces Z into Z = wZ'. Here
Z'is the partition function of the Cayley tree with the spin & and its associated edge
Geleted. The process can obviously be continued. After eliminating all but one spins
adall the edges, we arrive at '

- q
Z=wN"! gl I=gw™ " ©

The free energy per site in the thermodynamic limit is then
f=—kThnw (10)

%hich is analytic in the temperature T.

m'gg feveal the non-analyticity in the free energy, we shall in later discussions

fr Uce~a field ~ h to one of the spin components and consider more generally the free

wmaf =f(T, k) in both variables T and . While (10) shows f(T, 0) analyticin T, it
Seen that f(T, h) can be non-analytic in h.

E .

The correlation function and the absence of long-range order
The
fm'&ethOd of summation described above can also be used to evaluate the correlation

I for the spin model (5). For an appropriate definition of the correlation
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function, consider first the probability P,(e, B8) of finding two vertices | St€ps apartin the
respective spin states « and 8. Let the two spin sites be A and B. We have

P(a, B) =(8x(éa, @) 0k (&8, B)) = z? 2T u(g, §,) 1y
{&} <ipd

where ( ) denotes the thermal average and the prime in the summation denotes that the
spin states at A and B are fixed at é,=a, §g=8. Note that the usual spin-spin
correlation for the spin-3 Ising model (& = o) is given in terms of the probabilifies as

{goo) = Y oaopP(oa, 0B).
OACH
Since we expect lim;..« P;(a, B) to be independent of a and B when there exists 5o
correlation between the spins, the site-site correlation function can be taken to be

I'(e, B)=Pfa, B)—g > 1)

There is no long-range order if lim;. I';(a, B) =0, which says that the probability of
finding two sites far away to be in states a and § is a constant.

To evaluate the correlation function I',{a, B), we proceed asin § 2. Starting fromthe
surface vertices of a Cayley tree, we can carry out the spin sums one by one and
eliminate all vertices and edges except those lying on the unique path between AandB
(the full lines in figure 2). Number these vertices 1,2, ..., /—1 running from AtoB.

Figure 2. The full lines denote the unique path between two vertices A and Bof 2 Cayley
tree.

We then obtain

P, B)=Z"'w" Y T u(e, &)uléy, &) . .- uléi-i B)
£1...81-1
= q_l[v[]aB
where we have used (9) and V is a g X g matrix whose elements are
VaB E[V]QB = W-Iu(as,ﬁ)'

) ei or
Let the eigenvalues of V be A; and the ath component of the (normalized) igenvedt
associated with A; be ¢;(«). Then we may write

(13)

(14

, a N (15
[v ]aB = -; /\)¢j(a)¢j (B)
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It is easy to se€ that, as a consequence of (5), A;=1 is an eigenvalue of V with
ole)= 1/q for all . It follows then

LiaB)=q" £ Ao (@)o7(®) (16)

Now the matrix V has strictly positive elements and ¢, () is positive. Then by the
perron-Frobenius theorem, we know that A, = 1 is in fact the largest eigenvalue and is
pondegenerate. Hence we find ‘

lim F,(a, B)=O (17)

>0

which establishes the absence of a long-range order. ,
For the Potts and AT models, where V is a cyclic or doubly cyclic matrix, we then

find for the Potts models:

(@) =q""* exp[2mi(j— 1)(a—1)/q] (18)
/\1 =1
h=A=...=A=1—¢q/w (standard Potts) (19a)

,\]:;Vl. S exp[Be cos(2mk/q)+2mik(—1)/q]
k=1

> I, (Be)/Io(Be) as g (planar Potts). (19b)
For the AT model:
1 1 1 1
Hlw=3 ' 1 711 (20)
1 -1 1 -1
1 =1 -1 1

Ay =(uo+uy—u,~us)/w

As=(uo—ur+u—us)/w

As=(up—u;—u,+us)/w. (21
Wealso find
Ta,a)=q § AL (22)
j=2

4 s"scepﬁbility and fluctuation

Toinvess: .
- oinvestigate the non-analytic behaviour of the free energy f(T, h), where —h is the
Itroduced to the spin component , we consider the zero-field susceptibility

X = lim N (n2) —(n.y), (23)
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where
Ny = Z 6Kr(§i: a)- (24)
In view of the absence of a long-range order, we shall take
(n.)=N/q. -
It follows then from (11) and (12)
x=lim N 'Y, =a &=a)
N->o0 Z 1) § § ) (26)

Here, I(r, s) is the number of steps between sites r and s. One may recognize that (26)s
the usual fluctuation relation.

To carry out the summations in (26), we now-consider a regular Bethe lattice, The
lattice, shown in figure 3, is composed of g +1 generations of lattice points and has 3

Figure 3. Afour-generation (g = 3) Bethe lattice with coordination number y=3(B=2).

coordination number y = B+ 1. Number the generations by n(=0,1,..., g) so that
there are B” vertices in the nth generation. We may rewrite (26) for the g+l
generation lattice as

i X n’ (27)

g
n=0 n'=0

en

where
N,=(B*"'-1)/(B-1) (28)

and

= z Z l-’I(r.s)(gr'_"a’ £s=a) (29)

rensen”

is the correlation between the generations n and n'. Finally, after taking the ther
modynamic limit g - o0, we obtain

e (0
g-)oo

7 te,

The expression (29) for . can be explicitly evaluated using (16). To 1(12!125)‘”‘;8

consider the Potts model whose correlation function I';(a, a) hasbeen givenin
find from (27)
o _ _ _ n+n' ! (31)
X=q (=g T T A=g7(1~q") T OO

ren sen’
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e

A=E"-1)/(*+q-1) (32)
ud G(l) is the number of [ step paths between vertices in n and n'.

without loss of generality, we need only to consider n=n'. Itis clear that, starting

romagiven vertex A in n, there is precisely one vertex in n’ whichis n —n' steps away.
Sinee there are B" vertices in n, we find -

G(n—n')=B". A (33)
Gmilarly, there are B~1 vertices in ' which are n—n'+2 steps away from A, and
generally (B —1)B*™! vertices in n’ which are n —n’+ 2k steps away from A. Thus, for
n?n'

qz(q-l)"xﬁi?‘“’:B"(/\"‘"’ +¥ (8- l)B"",\"-"'+2k),
. k=1
=B™(BA)" " {I-AY1+(B=1)(BAY)"TH1-BA)™" 34)

For n'=n, we simply interchange n and n' in (34). ‘ ,
Substituting (34) and (28) into (27) and (30), and dropping terms that vanish in the
thermodynamic limit, we find :

g(q—1)"'x=(1+1)/(1-B\)—lim H(g, A) (35)
where ‘
Hig )=[A(B—1)/(1~-BA)1~BA)[1+A +A(B—1)(BA%¥/(1-BM)]. (36)

Itis now clear that
%q"‘(l—q"‘)(1+)\)2/(1—-B,\2) . Ba*<i
X=

. (37)
0 BA =1,

The susceptibility therefore diverges for BA’=1. Using (32), the condition BA*=1
implies

T<T.(VB) (38)
where ‘
T.(x) = e/k In[(g+x-1)/(x—1)] e=0 (39)
lel/k In[(x—1)/(x+1—q)] e<0,vB+1>4.

A striking result is that x diverges in the orthogonal model (e <0) provided that
*1>q. This appears to be a unique property of the Bethe lattice, for it is known
;hat for an Ising antiferromagnet, the g =2 orthogonal model, on a square or cubic
tice (B=3 or 5), the free energy f(T, k) is analytic in h at sufficiently low tempera-
(Brascamp and Kunz 1973). ,
( Theresult (37) for y can be readily generalized to the general spin model (5). Using
2d (27), we find

q
X=3 4@ (40)
k=2
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where
(g) N-IZZerk (41)

X =0 (@ T X A5 "

ren sen’

The summations in (42) can be carried out as in (31) with A, in place of \. We thep find

' S b@P+A0Y(1-BAD  Bal<i

x=5 7 @)
- % any BAZ=1.

Thus, the susceptibility diverges whenever any

- The above result serves to establish that the free energy f(T, h) fails to be analyticin
h, in at least the temperature ranges (44). For an Ising ferromagnet, it has been known
(Miiller-Hartmann and Zittartz 1974) more generally that the higher field derivativesof
the free energy diverge in wider temperature ranges: The result is that f(T, k) is
nonanalytic in k for T<< Ty, where Ty, is the Bethe—Peierls temperature of the Ising
model. A similar analysis can presumably be carried out for the present problem. We
shall, however, proceed in another direction.

The effect on the critical behaviour due to the large number of surface verticesof the
Bethe lattice appears to have been first observed by Runnels (1967). In the present
problem the non-analyticity of f(T, h) at Tsp manifests itself if one focuses attentionto
a central region of the lattice (Eggarter 1974). Proceeding along this line, we define the
susceptibility for a central region R of a Bethe lattice L as the followmg generalization
of (26):

XR—NR P rl(r:)(§r a é=a) (43)

reR seL

where Ny is the number of sitesin R. As wé shall see, xz divergesat Tppforany R # L
Specify the region R by the index 0<» <1 such that

R={n[0sn<wvg} )
and
Ne=(B""'~1)/(B~1). 4
Equation (27) now reads
(48)

x®(»)=Nz' Z Z Xon'-

0 n'=
|
The last expression can again be evaluated using (29) and (16). For the Potts model:
for example, we obtain the following in place of (35),

 g-1y X(u) (1+2)/(1= BA) lim (BA)*™H(g ) )

g—)w

Equation (49) is the same as (35) for v = 1. Itis clear, however, that we have

. {q”(q DA+1)/(1-Br)  |BA<1 (50)
X divergent |BA|=1.

forallv<1
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Thus, the susceptibility x(v) diverges for [BA|=1 or
T=<T.(B), (51)

qhere T.(B) lies above T.(VB). Similarly, the susceptibility x(v) for the general spin
odel (5) diverges whenever any [A,|= 1/B. We shall show in § 5 that, indeed, these
region(s) of divergences are related to the Bethe-Peierls temperature(s) of the spin

ystemn.

5, The Bethe-Peierls temperature
n this section, we determine the Bethe~Peierls critical temperature for the spin model
'Consider a lattice of coordination number y and focus our attention to a particular
ste, A. Let Pyyi), where
{n}=(n1, n2’ evey nq)
ntnt...t+tn,=v, (52)

bethe probability of finding A in the ith (=1, ..., q) state and n; of its y neighbouring
"sitesin the jth state. The probability that A is in the ith spin state is then

PA(i) ={},.:; Piyli). (53)
Similarly, the prdbability that one of the y neighbours of A is in the ith state is

Py(i)=y"" %{% nPay(7). (54)
For the system in a translationally invariant state, we then expect

P,(i)= Pg(i) i=1,2,...,q ‘ (55)
Oﬂlyq—l of the q equations in (55) are independent, since the summations over i on
bothsides of (55) are identically equal to 1.
The Bethe-Peierls approximation is to write (see, e.g., Huang 1963)
q
P{,,}(i) =FC3.1...nq Il (uijzj)ni (56)
Ci=t
where
Cng=v!/n1l . ny! (57)

k‘hﬁ‘ml}lﬁnomial coefficient, u; =u(i, j) is the Boltzmann factor (3), and z; a quasi-
Mty introduced to represent the effect of the rest of the lattice. Equations (55) are

““S_Cd t0 determine z,,...,z, The constant F in (56) is determined by the
Wmalization

LI Pu=1. (58)
n’isleads to
Fl=yf (59)
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-with
£ =Z UiZ;
= i (60)
Using (56) and (59), we find
P A =f7
o p-1 0y
- B =Fy" 25 HF). (61)
Equations (55) now lead to
Gi(zy,...,29)=0 i=1,....q (62)
where _ _
Gi(z,, .. -,Zq)Ef?’“Zizuijf}y—l. ‘ {63)
. J
Equations (62) are homogeneous in z7, . . ., z;. The existence of a non-trivial solution

is guaranteed because only ¢ —1 of the g equations are independent.
- - Without loss of generality, we may take z; =1 and consider g —1 of the g equations
in (62), say, i=2,...,q. Using(5), it is immediately seen that one solution to (62) is

zz=z3=...=zq¥1 (64)

which is valid at all temperatures. The other solutions, if any, are temperature
dependent.

If another solution to (62) exists, we say that a transition occurs (under the
Bethe-Peierls approximation) at the temperature the solution first appears. Thisis the
Bethe-Peierls temperature Tgp.

To determine Typin the present problem, we expand G;(1, zs, . . ., ;) near (64)and
rewrite the ¢ —1 equations as

q

Y (z-1)G; =0 i=2,....q (&)

j=2
where

G,-]'= w—y(BGi/BZ,-)z,‘;l. (66)
The condition that (65) has a nontrivial solution is

det| G| =0. 1
This is now the equation which determines Tgp. Note that det|Gy|isa (@~ 1x(g-D
determinant.

‘Using (63) and (15), it is easily found that
Gij = ’YVij - 5ij - (‘Y - 1)[V2]ii
{68)

= £ )A-M(y = DA~ 1100).

=1. Itis then conyemenl

The summatidn in (68) actually runs from k =2 to g since A, iy and A, he diagond

tointreduce &, the (g — 1) X (g — 1) matrix whose elements are
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patrix whose elements are (1—A)[(y—1)A. —11, i, k=2, . .., q. Equation (68) then
jeads to )

| det|Gy| = det(bAd") = det(d'd) det A (69)
Jhere &' is the adjoint of ¢. The first factor in (69) can be evaluated using the
ord:onormal relation

q
g+ L $lDE) =3, (70)
#hich leads to the value q~'. Tapis now determined by
q
(I—-1 kI:IZ (1=-2)(y=1A,~1]=0. 71)

Nowh, <1for k # 1. Hence the solutions are
Bre=(y—DAc=1 k=2,...,q (72)

We have obtained in § 4 the result that the susceptibility x(v) diverges for |BA,|= 1.
While for positive A, the temperature |BA,|=1 is indeed the Tgp given by (72), for
), <0thisis not the case. Now, as A, <0 only for some special energy parameters, such
% the orthogonal (e <0) Potts model, it seems that by rewriting the condition (55)
appropriately, one should be able to derive other Tgp which may lead to BA, = ~1. An
eample is the g =2 orthogonal Potts model. In this model the ordered state is
‘ntiferromagnetic’; in place of (55), one writes

PA(1)=P4(2) (73)
which indeed leads to the Tgp given by
BA=-1. (74

{This Tgp (for g =2) happens to be the same as that of €>0.) We have been unable,
bowever, to extend the considerations in the most general case.

8, Sllmmary

Wehave considered 2 general spin model on a Cayley tree. The free energy in zero field

Sanalyticin temperature and there is no long-range order. Considered as a function of

@ external field h, the free energy is non-analytic at h =0 in certain temperature

fnges. It is shown that when the surface effects are appropriately excluded, these

te“’Pel‘_atures coincide with the Bethe~Peierls temperatures of the spin model. Our

L.?;l:s}:“lpéy, in particular, that the free energy of an Ising antiferromagnet is nonana}y-
“7=0 at low temperatures. This behaviour is different from that of the Ising
®Momagnet on a square or cubic lattice.

Am“""'ﬁ'iglneuts

W \
emsh;m‘thank J.F Nagle for calling our attention to the paper of Runnels (1967).
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Note added in proof. Properties of the spin correlation functions of the Ising syste,
Cayley tree have been given recently by Falk. mona
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